| Author | |
|---|---|
| Keywords | |
| Abstract |
Matrix decomposition methods: Singular Value Decomposition (SVD) and Semi Discrete Decomposition (SDD) are proved to be successful in dimensionality reduction. However, to the best of our knowledge, no empirical results are presented and no comparison between these methods is done to uncover latent structures in the data. In this paper, we present how these methods can be used to identify and visualise latent structures in the time series data. Results on a high dimensional dataset demonstrate that SVD is more successful in uncovering the latent structures. |
| Year of Publication |
2010
|
| Journal |
Journal of Information & Knowledge Management (JIKM)
|
| Volume |
09
|
| Number of Pages |
81-92
|
| URL |
http://econpapers.repec.org/RePEc:wsi:jikmxx:v:09:y:2010:i:01:p:81-92
|
| Download citation |