
221

16 SOFTWARE PROCESS MATURITY AND
ORGANIZATIONAL POLITICS

Peter Axel Nielsen
Department of Computer Science

Aalborg University
Fredrik Bajers Vej 7

DK-9220 Aalborg
Denmark

Jacob Nørbjerg
Department of Informatics

Copenhagen Business School
Howitzvej 60

DK-2000 Frederiksberg
Denmark

Abstract

The discipline of information systems development has
witnessed a tremendous interest in improving software pro-
cesses. It is believed that improving a systems development
organization�s software processes will alleviate problems with
productivity and systems quality. In this paper we explore the
limitations of the theories and models behind software process
maturity. Through an action research project with a systems
development organization, we illustrate how maturity models
ignore issues of structural conflicts and contradictory demands
manifest in most organizations. This limits the models� ability
to explain software practice and thus limits their usefulness for
guiding organizational change processes.

1. INTRODUCTION

Organizations developing computer-based information systems struggle with
unexpected incidents, unstable requirements, staff shortages, rapid technological

Part 2: Managing Information Systems222

developments, unclear or conflicting statements from users and customers, etc.
These and other problems contribute to uncontrollable projects, runaway
budgets, and delayed products of inferior quality. The idea that systems develop-
ment organizations can and will become better at managing their software
projects is captured in the concept of software process maturity.

The meaning of maturity is spelled out in detail in various maturity models.
These models are intended to support improvement initiatives in software
producing organizations by (1) determining the organization�s maturity level
through comparing the organization�s development and management practices
with the model and (2) guiding the change process by pinpointing the improve-
ments needed to increase maturity; i.e., reach a higher level of maturity.

The capability maturity model (CMM) is one of the first and most influential
of the maturity models. The model describes maturity in terms of five levels.
Level 1 (initial) is characterized by the absence of even basic project manage-
ment practices. Level 5 (optimizing) is characterized by organization-wide
management and development practices and extensive use of process and
product measurements to monitor and continuously improve performance. The
levels are described in great detail in order to reduce ambiguity and the model
is accompanied by training programs for assessors as well as detailed guidelines
and procedures for assessments and maturity evaluations (Dunaway and Masters
1996, Paulk et al. 1993).

A number of competing models have emerged during the 1990s; e.g., the
Bootstrap model in Europe (Kuvaja et al. 1994), and the SPICE model (Enam
et al. 1998), intended to embrace all previous models. The CMM has had signi-
ficant influence on the concept of maturity and all subsequent models, however,
and we will use this model as our frame of reference in the rest of the article.

Further developments of the maturity models have been suggested. Sawyer
et al. (1997) have suggested a three-level maturity model for requirements
processes, and others suggest adding organizational learning and knowledge
management capabilities to the models (Baskerville and Pries-Heje 1999; Stelzer
et al. 1998).

Other researchers have raised more fundamental questions, challenging the
idea of software process maturity as such and the use of model-based assess-
ments to guide improvements. First, some argue that the assessment process
itself may be flawed due to immature assessment techniques (Bollinger and
McGowan 1991; O�Connel and Saiedian 2000; Smith et al. 1994).

Second, it has been argued that the effects of increased maturity on
organizational performance across different types of software producing organi-
zations is still unverified especially in organizations outside the U.S. (Basker-
ville and Pries-Heje 1999; Edgar-Nevill 1994; Mathiassen and Sørensen 1996;
Sharp et al. 1999; Velden et al. 1996). Some authors have gone even further and

Nielsen & Nørbjerg/Software Process Maturity 223

challenged the general validity of the maturity idea. The dominating maturity
models associate high maturity levels with documented processes and extensive
use of process and product measurements but some critics argue that today�s
successful software production depends on innovative capability, creativity, and
the ability to adapt to a rapidly changing environment, not on standardized
processes and detailed measurements. Hence, higher maturity levels may
actually be harmful instead of beneficial to the organization (Bach 1994, 1995;
Bollinger and McGowan 1991; Kohoutek 1996). The discussions about these
issues have, however, suffered from a lack of systematic theoretical and empiri-
cal research into the concept of maturity and its practical application�including
more explicit descriptions in the models of the models� own theoretical and
empirical base.

The recommendations in the maturity models are based on basic software
engineering ideas of sound development and management practices, and they
seem both sensible and feasible. We do, however, find that there is a need for
more systematic research into the models� theoretical and empirical foundations
in order to establish their validity and limitations more firmly.

In this paper, we study the practices and perceptions of project managers in
a small software producing organization. In section 2, we describe our research
approach. Section 3 presents the case and describes and discusses the project
managers� practices both related to the CMM and in a broader organizational
context. In section 4, we relate our observations to relevant theories of organiza-
tional politics and discuss the limitations of the CMM. In section 5, we conclude
that the CMM in its current form ignores relevant organizational issues, which,
we will argue, limits the value of CMM-based assessments and recommen-
dations. Further research is then outlined.

2. THE RESEARCH APPROACH

Our study is fundamentally action research. We have worked with the com-
pany�s project managers and software process improvement group, and actively
participated in their improvement efforts from 1997 to 1999. We have through-
out tried to balance the dual purposes of action research contributing both to the
action in the company and to research (Avison et al. 1999). Checkland (1991)
advocates that in action research there should be a framework being tested. Our
framework has been the CMM and the body of knowledge of software process
improvement (representative sources: Humphrey 1989; Paulk et al. 1993). We
have documented our action research in tape recordings and minutes of all
meetings where we have been present, in tape-recorded interviews with project
managers and middle managers, and in our own field notes and diaries produced

Part 2: Managing Information Systems224

during and after meetings. The documentation also consists of the reflective
papers written during the endeavor and thus influencing both our framework and
the actions we advocated in the company.

In this article, we focus on the project managers. We draw on two sources.
First, we conducted seven interviews with seven out of 10 project managers in
June, July, and August, 1997. The purpose was to elicit the project managers�
perceptions of problems with software processes in the company. Following the
techniques for qualitative interviewing we used an open-ended interview guide
(Patton 1990). After the first interview, we modified and improved the interview
guide. The interviews were tape-recorded and subsequently transcribed. In our
analysis of the qualitative data, we have followed Patton�s ideas. We have
worked closely with the text trying to let it speak for itself (Patton 1990).

As action researchers, we are not only observers; we are also involved in the
situation. We cannot avoid bringing in our own beliefs and experience when we
interpret and re-experience the interview text. Much of the interview text deals
directly with software process problems while our focus in this article is on the
organizational politics of software processes. Both of us have read the text
carefully with this focus and noted text we found to be significant. We have
compared our notes and settled on a set of categories of issues. We have then
read the text again looking for quotations confirming or disconfirming the cate-
gories. The final categories and quotations illustrating the categories now form
the basis of the case description in section 3. We will not claim that this is
anything like a grounded theory approach. We, as action researchers, may well
have formed interpretations that others would not have been able to form.

Second, we have continued our action research two years after the
interviews were conducted. That has allowed us to look closely at the project
managers in other situations, to view their actions in a long-term perspective,
and to work with several viewpoints on how to interpret their perceptions and
their actions. We have on many occasions tried to influence project managers
and others. Our shared practice serves as a context against which we judge our
interpretation of the interview text. That helps us triangulate our findings and it
provides a larger perspective for making sense of the project managers�
statements.

3. THE CASE

The interviews took place in the Research & Development (R&D) Division
of a company that develops leading edge instruments and systems. The instru-
ments are built from dedicated hardware with embedded software and they are
connected to a PC with analysis and presentation software. Most projects inte-

Nielsen & Nørbjerg/Software Process Maturity 225

grate both hardware and software; project management is also integrated. Very
large or complex projects are further divided into hardware and software pro-
jects, each with their own project manager.

The technical director manages the R&D. The R&D and its projects
collaborate closely with the Marketing and Sales Division and with the Produc-
tion Division.

Prior to our action research, the company had been through a long re-
orientation and downsizing process due to increased competition and setbacks
in one of the company�s major markets. Immediately before our entry, the R&D
went though a Bootstrap assessment (following Kuvaja et al. 1994). It was
concluded that most of the company�s software process problems concerned pro-
ject management, configuration management, testing, development model, and
requirements specification.

We describe the project managers� practice in section 3.1. In section 3.2, we
assess their practices relative to the necessary capabilities at CMM level 2, and
in section 3.3, we discuss the project managers� own interpretations and
explanations of their practices. In section 3.4, we compare the two inter-
pretations of the project managers� practice. Further, we interpret the project
managers� practices in terms of strategies to produce and deliver products under
difficult conditions of contradictory demands and organizational conflicts.

3.1 Project Management Practice

We focus on three areas of project management: estimates and schedules,
requirements management, and resource allocation. These illustrate most clearly
the relationships between the project managers and the surrounding organi-
zation.

3.1.1 Estimates and Schedules

The project managers seek to maintain an approach to estimation and
scheduling based on explicit plans and experience. They do this to get an over-
view and control of activities and deadlines. They do not expect schedules to
hold and they know that they often have to re-schedule.

A project manager negotiates estimates and schedules with the project team
based on a list of features and requirements for the product. Directives from
management, time pressure and uncertainty about the requirements, however,
often disturb the planning process as illustrated in this extract from the interview
with an experienced project manager:

Part 2: Managing Information Systems226

The time schedule was set on beforehand: We had to finish by
a certain month so I really didn�t have [estimation and
planning] problems. I�ve made some rough plans for the
requirement specification. They proved to hold or not to hold
at all. So I stopped doing that [i.e., planning]. The requirement
specification phase has been much longer than planned. We had
expected to complete in April or May, but in reality we didn�t
complete until August.�I�ve used a lot of time on setting up
time schedules; I�ve performed according to some rough plans
we agreed on; and we�ve tried to navigate from these [plans].

The project manager does not question the overall schedule set by management.
His plans and estimates are based on ad hoc and experience-based planning. The
estimate for the requirement specification phase did not hold. He was, however,
able to schedule and re-schedule throughout the project. He managed the project
anyway and at the time of the interview he was confident that he could complete
the project not later than a month after the original estimate. This later proved
to be right.

For other project managers, the conditions are not as favorable. Many
projects struggle with unrealistic time schedules set by management:

We got five days to write the requirement specification for [X].
That sort of sets the stage for the whole project. We had
thought of at least four months [to investigate] different types
of users and verify various concepts; but no, [the management]
thought that we could save a lot of time by saying: �You�ve got
five days.�

Product X was very complex and the project manager and the project had an
initial estimate of four months for the requirements specification alone. They
actually managed to write a specification in five days, but it was very superficial
and the project never came to believe in it completely.

The estimation and planning processes are strongly regulated by the product
launch schedule produced by the technical director together with the other
directors. The plan outlines features of next year�s products. It tells the Sales
Department when they can expect delivery of each product, when they can begin
selling the new product, and when they will have demo versions available.
Tentative product features are stated in the schedule and a first step in a project
is to write a more detailed product description that the Sales Department can use
for promotion. The following extract from an interview with a project manager
shows an important aspect of this.

Nielsen & Nørbjerg/Software Process Maturity 227

[The management] tries to announce what products will be out
next year before even the requirements specifications are made
or anything. That means that we�ve projects starting from mere
headlines [because] you have to.

From a marketing and sales point of view, this is a perfectly reasonable
approach. Without a launch schedule, it would be impossible for the sales repre-
sentatives to plan their sales efforts and to cater for the customers� needs and
demands. It is, however, a difficult situation to impose on the project managers.
On the one hand, they understand the need for a product launch schedule, but
they cannot make their project plans based on it. Even worse, they are asked to
estimate a project to develop a product that is only described as headlines.

When a project is underway, there is immense pressure to deliver on time.
The technical director is under pressure from the other divisions and from top
management and he in turn puts pressure on the projects to deliver as expected
without much consideration for their difficulties. The sales representatives, on
their side, are under pressure from the market because of their commitments to
deliver to the customers according to the launch schedule.

Summarizing the above, we can say that the project managers really try to
estimate and schedule their projects. They know the planning techniques, but
they find that these techniques don�t help them to cope with the problems they
face. Their frustration can be formulated as in the following extract: �You gave
your best shot and after some time you were beyond the time schedule because
it didn�t matter�you just had to complete.�

3.1.2 Requirements Management

We group the processes through which requirements are found, described,
prioritized, and later changed and managed as requirements management.

Many project managers and team members focus tremendously on the
requirements, while the projects� environment often neglect the details of
requirements and hence also requirements management. Most projects try to
follow the company�s development model where requirement specification plays
a major role and some work systematically with scenarios, using cases and
prototype testing internally and at customer sites in the requirements definition
process. This process is time consuming but results in detailed, and�according
to the project managers�very useful specifications.

Other projects take requirements specification more lightly. One project
develops a system to support measurements according to five different national
certification standards. The project manager explains the requirements manage-
ment in the following way:

Part 2: Managing Information Systems228

It has been characteristic of this project from day one that it has
been absolutely informal. It is probably the biggest �drawer
project� ever.�[Through the whole project] there has been no
formal requirement specification.

This project never produced a requirement specification but used the five
national certification standards instead, according to the project manager. These
standards do not, however, mention central aspects of a computerized system,
e.g., the user interface.

A �drawer project� is a project initiated by a project manager without
explicit approval from the technical director. If the project manager succeeds in
obtaining formal support for the project, it will emerge from the project
manager�s drawer and officially start. Several of the project managers we
interviewed reported that their (now officially approved) projects began as
drawer projects. It is, of course, almost impossible to apply proper processes in
a drawer project, since it is a cover-up of what is actually going on.

The pressure put on the projects to meet deadlines reduces their ability to
define and manage requirements systematically. For instance, when a deadline
approaches, a project manager may simply take matters in his own hands and
strip requirements. One project manager describes it this way: �Then you have
to be clear. You�ll have to adjust your own ambitions for the project. How many
nice-to-have features are thrown away?� The project managers see themselves
in a situation where the marketing department tries to push as many features as
possible into the product without necessarily considering time and development
costs. On the other hand, the technical director wants the projects to deliver on
time. For the project managers, it becomes more important to meet deadlines
with a product that works than implementing all requirements and they are,
therefore, prepared to remove requirements.

The change of requirements must be approved in the project�s steering
committee according to the company�s official procedures. In practice, however,
the project managers assume responsibility for requirements change, sometimes
with subsequent approval in the committee. The following statement by a project
manager displays extreme confidence in his overview of the market and his
ability to make the right decisions regarding the requirements:

No, [the changes] are approved by the project manager. I take
the decision. I don�t necessarily go out and ask a large part of
the market�.OK I have the insight into the market needs that
it requires.

The project managers partly blame the slow and bureaucratic approval process
for this practice. To avoid the delays caused by this process, the project
managers will also often postpone the formal requirements review and sign-off
for as long as possible.

Nielsen & Nørbjerg/Software Process Maturity 229

3.1.3 Resource Allocation

Resource allocation concerns two problems: which projects to start and the
allocation of manpower to projects. There are far too few software developers
with the specialized knowledge required to develop the company�s products and
there is a constant struggle between project managers to get sufficient
developers with the right qualifications allocated to projects:

When we started we had two technical project managers�one
for Windows SW and one for [hardware]. There were eight
[developers] on SW and five on [hardware]. That was 20 less
than what we�d asked for.

Project managers find other ways to deal with this. Developers cannot be
allocated to a project that is not officially started, but to be on the safe side, a
project manager can always create a drawer project. The following extract shows
this: �It has been running since� it�s one in the political spheres� in
principle�officially it was started a month ago [July 1997]. Unofficially,
it�started in late February.� The project managers perceive the resource
allocation process as sometimes arbitrary or paradoxical. They are requested to
estimate their manpower needs but doing so is an effort that requires manpower:
�[Getting resources]�it is like a vicious circle. If there isn�t anybody on the
project, then�it�s hard to make an estimate. And without an estimate you don�t
get any people, right?�

Other project managers were, however, able to hire and train new people as
needed. In the following statement, a project manager refers to a project that had
been running for years without officially being recognized as a project, and
without a plan and estimates. The manager was, however, able to hire and train
new people for the project.

Action researcher: To start this project you needed project
team members with particular qualifications. These qualifica-
tions are not available in the market and you cannot move
people around in the company. You then [hired] new people
and trained them for half a year. Then they are ready to enter
the project.
Project manager: That�s exactly the situation here.

Another project stalled for a long time because a key programmer was tem-
porarily allocated to do maintenance on another high priority project. To over-
come the loss of a key resource, the project manager went �shopping� for

Part 2: Managing Information Systems230

developers in other projects. This is always a problematic thing to do, partly
because it may hurt relations with other project managers, partly because the
developer himself may resent being moved.

3.2 A CMM Perspective

The company has an elaborate quality management system that is followed,
at least formally, but our interviews show that the company�s software practices
(at the time of the interviews) are definitely immature according to the CMM.
Estimates and plans are not produced and managed systematically. Requirements
management is ad hoc and resources are not allocated according to plans and
priorities but through a highly political process.

The company�s software processes thus fail to satisfy at least three out of the
six key process areas required to be a CMM level 2 organization. Additionally,
there are weak processes in configuration management and sub-contractor
management, but here it suffices to look at how the company�s processes con-
form to the CMM�s requirements for the three areas above (the following is
based on Paulk et al. 1993, pp. 59-60).

Requirements Management:
Goal 1: System requirements allocated to software are controlled to establish

a baseline for software engineering and management use.
A baseline of requirements is rarely established. On the contrary,
requirements are often held fluid until the very last day of the project.

Goal 2: Software plans, products, and activities are kept consistent with the
system requirements allocated to software.
Some projects try to do this in their own way. Many projects fiddle with
requirements to meet delivery deadlines or handle other contingencies.

Software Project Planning:
Goal 1: Software estimates are documented for use in planning and tracking

software projects.
Many projects estimate their effort, but the delivery date is often fixed
beforehand. The estimates are documented in the project plans.

Goal 2: Software project activities and commitments are planned and documented.
Activities are planned in most projects and documented in the project
plans. Most projects have ways of establishing and maintaining internal
commitments. Many projects do not handle external commitment well.
Altogether, few commitments are documented.

Goal 3: Affected groups and individuals agree to their commitments related to
the software project.

Nielsen & Nørbjerg/Software Process Maturity 231

All agreement to commitment is unsystematic, and external commitment
often fails with unnecessary uncertainty as a result.

Software Project Tracking and Oversight:
Goal 1: Actual results and performances are tracked against the software plans.

The amount of running code is measured against the deadline, but in
most cases there are no means of early discovery of a project in trouble.

Goal 2: Corrective actions are taken and managed to closure when actual
results and performance deviate significantly from the software plans.
Corrective actions are taken, but mostly based on experience and gut
feeling.

This evaluation is supported by a Bootstrap assessment conducted half a year
before we entered the company. The Bootstrap assessment has slightly different
maturity measures, but nevertheless the assessors concluded that the following
processes needed to be improved: software development model, description of
software processes, requirements specification, project management, module and
integration testing, and configuration management. That coincides largely with
our CMM evaluation.

Based on our interviews, CMM would recommend that the software practice
should be improved considerably in at least three out of the six key process areas
at CMM level 2. One thing in particular needs to be improved; namely, the way
commitments are established and maintained. Humphrey (1989, p.70) explains
the elements of making commitment:

1. Commitments are made willingly.
2. Commitments are not made lightly; they are carefully considered.
3. There is agreement on what, whom, and when.
4. Commitments are stated openly and publicly.
5. The person responsible tries to meet the commitment.
6. Prior notice is given if a committed date cannot be met.

The company clearly does not demonstrate such dedication to commitments.
According to the CMM, it should be established.

3.3 A Perspective from Organizational Politics

There is no doubt that the company�s software development suffers from
budget and schedule overruns, high workload, firefighting, and quality problems.
The recommendations produced by a maturity assessment are, therefore, sen-
sible, i.e., to install and follow systematic processes. However, the only explana-
tion of the problems offered by an assessment is the low maturity of the pro-

Part 2: Managing Information Systems232

cesses, in other words, that the company lacks proper and systematic software
practices.

The CMM certainly points to a number of problems or areas where the com-
pany�s software processes should and possibly could be improved. That is
useful, but it is our contention that CMM provides a partial view on the
problems and necessary improvements. CMM points out that the practices aren�t
sufficiently rational. In particular, commitments should be formed in a more
explicit, open, and public way. That is an admirable desire; but we find it hard
to be explicit, open, and public under the conditions in the company and we
believe that attempts to install such a change will create resistance. In our
interpretation of the company�s software processes, we would have to look for
an explanation of the resistance to change in the political reality in the company.
We thus need deeper, more complex explanations of the process problems in
order to identify feasible and sensible solutions.

Through the interviews and through our intervention into the company, we
have come to see it as an organization characterized by contradictory demands,
structural conflicts, limited resources, uncertainty, and change. We will now
discuss how these specific organizational conditions make the project managers
deliberately or implicitly choose less systematic and rational processes than
advocated by the CMM.

The project managers face contradictory demands. They are, for example,
under considerable pressure to deliver on time. Delivery on time pervades the
whole company. The marketing division requires it because it needs to plan the
launch on the market. The sales representatives expect it because they have
already made commitments to the customers. Thus the technical director puts a
lot of pressure on projects. On the other hand, everybody wants error-free
running code with high usability that meets the complex needs of the customers.
These requirements are contradictory in the sense that they cannot be fulfilled
at the same time in all projects. Balancing these requirements is not easy,
however, and it creates problems and conflicts in many projects:

Action researcher: Can one say that there is a contradiction
between you and your need to experiment and management�s
need to have a [delivery] date.
Project manager: Yes, that�s the paradox.

For the project managers, the product quality depends on their ability to
experiment with the technology and the requirements. However, experimentation
creates planning uncertainties, and they are, therefore, less comfortable with a
fixed delivery date. Project managers consequently understand estimates as
political statements and delivery dates as something to be continuously nego-
tiated.

Nielsen & Nørbjerg/Software Process Maturity 233

There are structural conflicts, beyond mere contradictory demands and these
form fundamental conditions for the company and its projects. In particular,
there are conflicts around the limited development resources. The limited
resources create conflicts among the project managers as well as between the
projects and the technical director. The project managers� competition over
available resources takes many both subtle and outspoken forms. When the
competition is latent, the project managers will try to influence the technical
director�s decisions about staffing of projects. It is not uncommon that the
technical director has promised a project manager a new developer, while no
developer is available. When the competition is more manifest, a project
manager might go to the technical director and argue that he should have an
additional developer from another project that is under less pressure.

It is in the interest of the project managers to have as many resources as
possible. This will effectively enable them to handle some of the uncertainties
they face. The technical director, on the other hand, wants to provide the pro-
jects with as few resources as possible in order to be able to start more projects
or reduce costs. It is in the interest of the project manager to have developers
with specific competencies allocated to their projects, but the technical director
needs to maintain a flexible work force where competence can be moved around
depending on needs.

There is uncertainty in any development process. A promising technology
turns out to be less optimal than anticipated. Some requirements may turn out
to be much more complex to realize than anticipated. The marketing department
might change its mind. It is impossible to find and hire needed resources. Such
conditions are inherent in systems development. The project managers live with
the uncertainties. They try to be on top of the situation, but they are often taken
by surprise. To reduce uncertainty, they need time to experiment and systema-
tically search for new and relevant information, but this collides with the
requirement to deliver on time, as discussed above.

There is change in the project�s environment. The organizational structure
is changing while new managers are hired and others leave. When a project is
created or terminated, major changes happen in the R&D division. When a
product sells well or not so well, changes are instantiated. When a market seg-
ment increases or decreases, the organization changes as a consequence. To a
project manager, significant changes also occur when resources and thereby
knowledge leaves the company: �It happened, really, that in a period until
January 1997 almost all [relevant] knowledge disappeared from the company.
Some areas in the company have never recovered from this knowledge drain.�

From this perspective, we have come to see the project managers as com-
petent actors in a highly contradictory and complex organizational environment.
They want to produce something that is usable, at an acceptable level of quality,

Part 2: Managing Information Systems234

and reasonably close to an acceptable delivery date. Thus, their behavior is not
only an example of immature software practices, but can be understood as
strategies to maintain control of their own situation and ensure the success of the
projects they are responsible for, in an environment of uncertainty, contra-
diction, and conflict.

The project managers� strategies are also counter-productive even from their
own perspective. They are caught in a game out of their control. There is a
cover-up of the actual performance in the projects. There is protection of
resources. There is protection of self. These strategies are simplistic and cannot
change the situation for the project managers. Their behavior reinforces the same
conditions that they oppose.

4. CMM AND ORGANIZATIONAL POLITICS

The practices we have described in the R&D division can be found in other
companies as well, and so can the problems with time and budget overruns,
quality, etc. The CMM and similar maturity models will largely explain such
practices as lack of maturity and recommend installing systematic management
processes based on mutual commitments. While this is useful, it is also too
limited a view. To properly understand these practices, we need another perspec-
tive than that offered by the CMM and other maturity models. We need a
perspective that allows us to understand the problems as symptoms of under-
lying causes embedded in the organization and to see the project managers� prac-
tices as means to steer their project through contradictory demands, organiza-
tional conflicts, and uncertainties regarding product features, technology, and
staffing.

Other empirical studies produce similar descriptions of the conditions for
software project management. In a recent study, Linberg (1999) observes that
developers found that management sends conflicting signals about the relative
importance of schedule, time, quality, and cost in software projects. The
developers reported deliberate initial underestimation of projects in order to
secure project approval. The (inevitable) ensuing delays and cost overruns,
therefore, came as no surprise to the developers. The study further shows that
the developers and managers did not agree on what it means for a project to be
successful. Consequently, they did not agree on what it means to fail.

Keil and Robey (1999) interviewed IS auditors about the handling of
troubled IS projects. Handling a troubled IS projects requires that somebody
communicates the bad news to somebody else who can do something about it,
but the message may be delayed because nobody wants to transmit or act upon
news of a troubled project out of fear of the consequences. �Blowing the

Nielsen & Nørbjerg/Software Process Maturity 235

whistle� on a troubled project is perceived as �career suicide� or there may be
so much vested interest and prestige in the project that the bad news is simply
ignored by managers with the power needed to act on troubled projects. �The
would-be whistle blower must wield sufficient power to challenge [the] con-
viction [that project completion is critical]� (Keil and Robey 1999, p. 83). Both
Linberg�s and Keil and Robey�s studies show how important aspects of the pro-
ject managers� actions cannot be understood solely as lack of maturity or of
rational and systematic processes. Following Linberg, we can certainly see how
different actors in the company hold different views on projects and how to
manage them, but that these are rarely voiced in front of the technical director.
In effect, there is a cover-up of the different perceptions. Following Keil and
Robey, we can also see how bad news are rarely communicated in the R&D
division.

Thus, we can measure the software process maturity by means of the CMM,
but there are also relevant and important aspects of the project managers�
practices that we cannot measure or understand within the framework of soft-
ware process capability and maturity. We find the theories of organizational
politics to offer a relevant alternative perspective. Drory and Romm (1990) write
that theories on organizational politics

indicate that formal organizational processes such as decision
and policy making, goal setting, and resource distribution are
not conducted predominantly by rational considerations which
represent the best interests of the organization (p. 1133).

They draw a comprehensive picture of organizational politics encompassing
such elements as self-serving behavior, acting against organizational goals,
concealment of motives, informal behavior, uncertainty in decision making, and
organizational conflicts.

Through an extensive literature survey, Drory and Romm (1990, p. 1147)
come to define organizational politics as a combination of the following three
elements: influence, informal means, and conflict. Based on this, we can charac-
terize the practices of the R&D division as being under the influence of
organizational politics.

We can go even further based on Knights and Murray�s (1994) study of
conflicting management practice in information systems development. Here they
argue that IS organizations are dominated by competing, politicizing, and con-
flicting groups. The conflicts are, however, not founded in simple power
struggles, personal ambitions, or �turf guarding,� but in deeper layers of con-
flicting views on what is best for the organization. These views influence and are
at the same time shaped by personal ambition, departmental loyalties, different
world views, and structural conflicts over priorities:

Part 2: Managing Information Systems236

it is impossible and misleading to separate off the albeit
problematic pursuit of self or sectional interests from those of
the organization itself. Rather, it is through the construction,
negotiation and reappraisal of self, collective and organiza-
tional interests that the fragile reality of an organization is
sustained, reproduced and changed (Knights and Murray 1994,
p. 29).

Therefore�according to Knights and Murray�there is no right or universally
valid organizational goal or strategy. Broken down to the day-to-day business of
producing software and information systems, this means that there is no overall
goal within which to define and prioritize work; there is only an ongoing poli-
tical struggle about what constitutes such a goal. We take this to be a chal-
lenging and opposite view on systems development than that offered by the
CMM.

In this light then, we see that the project managers in the company perceive
themselves as perfectly capable of determining what is in the best interest of the
company, and their organizational environments as obstacles for successful
projects. They will, therefore, do what they can to enlarge the space in which
they have the power to act in whichever ways they see appropriate.

The CMM advises a rationalistic way out of this, but organizational politics
points out that a rationalistic way may not work. The CMM advocates insight
into and control with projects, but organizational politics offers an explanation
of why organizational actors might perceive any sign of openness as a weakness
to be exploited by others in the organization.

5. CONCLUSION

In this article, we have argued and illustrated that the CMM offers a view
on organizational practice that is sometimes too limited. In our case, we have
found that many other aspects than lack of maturity and rationality are relevant
and important in order to understand software development practice. Through
an analysis of interviews with project managers, we have shown that by seeing
organizations as political, rather than rational, we can provide a valid comple-
mentary explanation to the maturity models� interpretations of development
practices. We have argued this for the case with which we have been involved,
but it is our contention that our findings apply to other systems development
organizations as well.

The CMM and other maturity models are good for objectively assessing
software processes. The theories of organizational politics are good for
explaining other aspects of organizational behavior. Organizational politics is,

Nielsen & Nørbjerg/Software Process Maturity 237

therefore, not an alternative to the maturity models; it should be seen as comple-
mentary to these models.

To successfully change and improve software practices we have to find a
synthesis between the maturity models� perspective and that of organizational
politics. It is possible that the CMM and other maturity models would be greatly
enhanced by having a better idea about organizational reality whereas theories
of organizational politics when used in software process improvement would be
greatly enhanced by having some idea about how to intervene in and change
practice. Here we have merely established the need for such a synthesis. We will
leave it for further research to explore.

6. ACKNOWLEDGMENTS

The Danish National Centre for IT Research supported the action research
project. We thank the company and their software improvers for the collabora-
tion during 1997-1999. We thank our colleagues, I. Aaen, K. Kautz, L.
Mathiassen, and two anonymous reviewers for helpful comments on previous
versions of the article.

7. REFERENCES

Avison, D., Lau, F., Nielsen, P. A., and Myers, M. �Action Research,� Communications of the
ACM (42:1), 1999, pp. 94-97.

Bach, J. �Enough About Process: What We Need Are Heroes,� IEEE Software (12), March 1995,
pp. 96-98.

Bach, J. �The Immaturity of the CMM,� American Programmer (7:9), 1994, pp. 13-18.
Baskerville, R., and Pries-Heje, J. �Managing Knowledge Capability and Maturity,� in Informa-

tion Systems: Current Issues and Future Changes, T. J. Larsen, L. Levine, and J. I. DeGross
(eds.), Laxenburg, Austria: IFIP Press, 1999, pp. 175-196.

Bollinger, T. B., and McGowan, C. �A Critical Look at Software Capability Evaluations,� IEEE
Software (8:4), 1991, pp. 25-41.

Checkland, P. �From Framework Through Experience to Learning: The Essential Nature of
Action Research,� in Information Systems Research: Contemporary Approaches and
Emergent Traditions, H-E. Nissen, H. K. Klein, and R. Hirschheim (eds.), Amsterdam:
Elsevier/North-Holland, 1991, pp. 397�403.

Drory, A., and Romm, T. �The Definition of Organizational Politics: A Review,� Human Rela-
tions (43:11), 1990, pp. 1133-1154.

Dunaway, D. K., and Masters, S. CMM-Based Appraisal for Internal Process Improvement (CBA
IPI): Method Description, Technical Report: CMU/SEI-96-TR-007, Software Engineering
Institute, Pittsburgh, PA, 1996.

Edgar-Nevill, V. M. A. �Evaluation of the SEI Software Capability Model Within an Information
Systems Context: In Pursuit of Software Quality,� in Software Quality Management II:
Managing Quality Systems, Volume 1, M. Ross, C. A. Brebbia, G. Staples, and J. Stapleton
(eds.), Ashurst, UK: WIT Press, 1994, pp. 263-278.

Part 2: Managing Information Systems238

Enam, K. E., Drouin, J.-N., and Melo, W. The Theory and Practice of Software Process
Improvement and Capability Determination, Los Alamitos, CA: IEEE Computer Society
Press, 1998.

Humphrey, W. S. Managing the Software Process, Reading, MA: Addison-Wesley, 1989.
Keil, M., and Robey, D. �Turning Around Troubled Software Projects: An Exploratory Study of

the De-escalation of Commitment to Failing Courses of Action,� Journal of Management
Information Systems (15:4), 1999, pp. 63-87.

Knights, D., and Murray, F. Managers Divided., Chichester, England: John Wiley & Sons, 1994.
Kohoutek, H. J. �Reflections on the Capability and Maturity Models of Engineering Processes,�

Quality and Reliability Engineering International (12:2), 1996, pp. 147-155.
Kuvaja, P., Similä, J., Krzanik, L., Bicego, W., Saukkonen, S., and Koch, G. Software Process

Assessment and Improvement: The Bootstrap Approach, Oxford: Blackwell Publishers,
1994.

Linberg, K. R. �Software Developer Perceptions About Software Project Failure: A Case Study,�
The Journal of Systems and Software (49), 1999, pp. 177-192.

Mathiassen, L., and Sørensen, C. �The Capability Maturity Model and CASE,� Information
Systems Journal (6), 1996, pp. 195-208.

O�Connel, E., and Saiedian, H. �Can You Trust Software Capability Evaluations,� IEEE
Computer (33:2), 2000, pp. 28 �35.

Patton, M. Q. Qualitative Evaluation and Research Methods (2nd Edition), New York: Sage
Publications, 1990.

Paulk, M. C., Curtis, B., Chrissis, M. B., and Weber, C. V. Capability Maturity Model for
Software, Version 1.1. 93-TR-024, Software Engineering Institute, Pittsburgh, PA, 1993
(http://www.sei.cmu.edu/publications/documents/93.reports/93.tr.024.html).

Sawyer, P., Sommerville, I., and Viller, S. �Requirements Process Improvement Through the
Phased Introduction of Good Practice,� Software Process: Improvement and Practice (3),
1997, pp. 19-34.

Sharp, H., Woodman, M., Hovenden, F., and Robinson, H. �The Role of �Culture� in Successful
Software Process Improvement,� in Proceedings of the Twenty-fifth EUROMICRO
Conference�Informatics: Theory and Practice for the New Millennium, Los Alamitos, CA:
IEEE Computing Society Press, 1999, pp. 170-176.

Smith, W. L., Fletcher, R. I., Gray, E. M., and Hunter, R. B. �Software Process Improvement: The
Route to Software Quality?� in Software Quality Management II: Managing Quality
Systems, Volume 1, M. Ross, C. A. Brebbia, G. Staples, and J. Stapleton (eds.), Ashurst, UK:
WIT Press, 1994, pp. 193-211.

Stelzer, D., Mellis, W., and Herzwurm, G. �Technology Diffusion in Software Development
Processes: The Contribution of Organizational Learning to Software Process Improvement,�
in Information Systems Innovation and Diffusion: Issues and Directions, T. J. Larsen and E.
McGuire (eds.), Hershey, PA: Idea Group Publishing, 1998, pp. 297-344.

Velden, M. J. v.d., Vreke, J., Wal, B. v.d., and Symons, A. �Experiences with the Capability
Maturity Model in a Research Environment,� Software Quality Journal (5), 1996, pp. 87-95.

About the Authors

Peter Axel Nielsen is currently an associate professor in Information
Systems at the Department of Computer Science at Aalborg University. Over the
past years he has been engaged in understanding information systems develop-

Nielsen & Nørbjerg/Software Process Maturity 239

ment practice and the use of methodologies. His research interests include
analysis and design techniques, object-orientation, and software process
improvement. He is co-author of a book on object-oriented analysis and design
and a forthcoming book on software process improvement. Peter can be reached
by e-mail at pan@cs.auc.dk.

Jacob Nørbjerg holds a M.Sc. and a Ph.D. in computer science from the
University of Copenhagen. His research interests include software process
improvement, systems development as a work process, and the design, con-
struction, and use of information systems in organizations, particularly distri-
buted organizations. Prior to his present assignment at Copenhagen Business
School, he worked at the Center for Tele-Information, Technical University of
Denmark, and at the Department of Computer Science, University of Copen-
hagen, where he participated in an international research project about CSCW
and software engineering. Jacob can be reached by e-mail at jacob@cbs.dk.

Part 2: Managing Information Systems240

