1 7 IMPLICATIONS OF A SERVICE-
ORIENTED VIEW OF SOFTWARE

Paul Layzell

Department of Computation
University of Manchester

Institute of Science and Technology
Manchester M60 10D

United Kingdom

Abstract

A change in attitudes and approaches to software develop-
ment is emerging from the software engineering community, in
which software is no longer regarded as a product, but as a
service. This paper outlines the history of this change and
reviews the implications of a service-oriented approach to
information systems development. The chiefimpact is the need
for software engineers, information systems developers, and
managers to take a much broader view of the development and
deployment process, with far reaching implications for tradi-
tional IS departments.

1. INTRODUCTION

Formany years, software engineers and information system developers have
striven to produce methods of software development that lead to the successful
specification, design, implementation, and deployment of information processing
systems.

Such methods abound, ranging from technical approaches to software devel-
opment through to broader, socio-technical based approaches. No contemporary
organization can function without the sophisticated information processing
support systems these methods deliver; however, each method has its limitations
and much criticism is still levelled for the general inflexibility in approach and,
more often, the failure to fully understand the essential user requirements.

241

242 Part 2: Managing Information Systems

While considerable research effort has been directed toward improving sys-
tem development methods, either by taking a new technical approach (Booch et
al. 1999) or by placing greater emphasis on broader user and organizational
issues (Checkland and Scholes 1990), the underlying structure of software has
remained broadly the same (Pressman 1997).

Researchers must challenge not only the appropriateness of contemporary
information system development methods, but also whether the underlying
technical structure of software is correct and whether mis-formed structures are
the root cause of the continuing difficulties experienced in developing and
deploying successful information systems (Brereton et al. 1999).

To address this fundamental issue, in 1995 British Telecommunications plc
(BT) recognized the need to undertake long-term research that would lead to
different, and possibly radical, ways in which to develop information systems
of the future. BT commissioned a group of universities in the United Kingdom
to undertake this research. Senior academics from UMIST, Keele University,
and the University of Durham, came together with BT staff to form DiCE (The
Distributed Centre of Excellence in Software Engineering), a body that would
work toward the development of a new approach to the production of highly
flexible, but robust, software to meet the needs of the new, emerging
organizations that would drive economies in the 21* century.

The emphasis on highly flexible software arose because the Internet age was
ushering in a new era of highly dynamic and agile organizations that must be in
a constant state of evolution if they are to compete and survive in an increasingly
global marketplace (Truex et al. 1999). The results of this work are summarized
in section 2, but full details can be found in Brereton et al.

Building upon this work, a key research issue emerged—the changing
nature of software—in which the view of software shifts from being a product
to one in which it is considered a service.

This change in attitude has far-reaching consequences for information
system software, information system users, information system development
methods, and information system developers.

A summary of the key concepts of software as a service is presented,
followed by a review of the key consequences for information systems methods
and developers. It is hoped that the issues raised present a fresh perspective on
information systems and their development, laying down a research agenda that
will engage the wider information systems and software engineering community.

2. A CHANGE IN PERSPECTIVE

While every individual and organization is heavily reliant on sophisticated
information processing systems, there is still much criticism of the development
process and resulting products (Jones 1996). Criticisms include high cost, long

Layzell/Service-Oriented View of Sofiware 243

lead times in development, and poor flexibility of the final system. Many of
these issues have been accentuated through the widespread use of the Internet
and the acceleration of business cycles demanded by e-business (Reifer 2000).

The aim of the BT-funded work conducted by the DiCE group was to form
a vision of the future of software and software development, based upon
systematic use of expert judgement and peer review, leading to the establishment
of a long-term research agenda that could help meet the needs of society for
software that is reasonably priced, reliable, adaptable, and available when and
where needed.

From the outset, part of the DiCE philosophy was to take a holistic view of
software and software-based systems; in particular, to avoid the pitfalls inherent
in viewing software from a specialist perspective, either in terms of technologies
(e.g., formal methods, object orientation, component-based approaches, agents),
or in terms of life cycle phases.

To achieve this holistic view, the core research group was supplemented by
a team of interdisciplinary experts who knew something about software, but
whose views were driven by their own domains and expertise and would thus
inevitably shed a different light on the problems of software development. Five
key themes emerged from the work.

First, software will need to be developed to meet necessary and sufficient
requirements, i.e., for the majority of users, while there will be a minimum set
of requirements software must meet, over-engineered systems with redundant
functionality are not required. For example, users of a sophisticated word
processor may only need a very small subset of its capabilities and, from the
user’s point of view, should only need to acquire and pay for that subset and not
be overburdened by the cost of ownership of features they do not use or require.

Second, building upon this initial outcome, software of the future will be
personalized. Software is currently packaged and marketed as a generic product
with little scope for configuration or personalization. In the future, software
should be capable of personalization, providing users with a tailored, unique
working environment that best suits their personal needs and working styles—
an essential requirement in job design (Arnold et al. 1998).

Third, software should be adaptable. For example, software might contain
reflective processes that monitor and understand how it is being used and will
identify and implement ways in which it can change in order to better meet user
requirements, interface styles, and patterns of working. Adaptation is also con-
cerned with the need to commission new or changed software and decommission
redundant software as and when user requirements change, thus supporting
personalization.

Fourth, arising from the share and communication philosophy embodied in
the Internet, software should be fine-grained and structured into small, simple
units that cooperate through rich communication structures and information

244 Part 2: Managing Information Systems

gathering. This will also provide a high degree of resilience against failure in
part of the software network and allow software to renegotiate use of alter-
natives in order to facilitate self-adaptation and personalization.

Finally, in order to engender trust and confidence in increasingly complex
software, software needs to operate in a transparent manner.

3. THE SERVICE-BASED VISION

3.1 Software as a Service

Most software engineering techniques are conventional supply-side
methods, driven by technological advance. This works well for systems with
rigid boundaries of concern, such as embedded systems, but it breaks down for
applications where system boundaries are not fixed and are subject to constant
urgent change, as in emergent organizations.

To counter the problems of rapid evolution of software, particularly for
emergent organizations (Truex et al. 1999), an alternative view of software is
required, in which systems can be rapidly composed initially from primitive
components and subsequently from application frameworks composed of
numerous primitive components.

At first, this appears to be component-based software engineering; however,
component-based software engineering only delivers part of the answer and in
itself is not sufficient. Neither is the component-based approach wholly appro-
priate (Brereton and Budgen 2000). There is considerable evidence that current
component-based approaches are still relatively cumbersome and inflexible and
do not necessarily give the levels of ultra-flexibility required for extremely
dynamic organizations with modification to conventional technologies (Fingar
2000).

A more radical view of software is required, namely a demand-led approach
to information system development in which the primary focus of concern is not
software—the product of the development process—but rather the service
provided by the software.

For developers, the issue is no longer how to build information processing
systems that have properties of configurability, maintainability, and longevity.
Instead it is the ability to rapidly compose information processing systems so
that they can be used and then discarded, to be replaced by a new system compo-
sition that meets a new set of requirements, moving the focus of development
from the product to the service provided. At the extreme, the service-oriented
view discards the costs of ownership of a system because every instantiation of
a set of requirements is executed only once and then discarded, before the
original requirements evolve and a new system is deployed.

Layzell/Service-Oriented View of Sofiware 245

From a user’s perspective, software is a service, with the outcomes from its
use bringing business benefit, while the software itself has little intrinsic value,
and thus conforming to the widely accepted definition of a service:

an act or performance offered by one party to another.
Although the process may be tied to a physical product, the
performance is essentially intangible and does not normally
result in ownership of any of the factors of production
(Lovelock et al. 1996, p. 6).

Software thus becomes a series of services that are delivered through a
supply chain with development effort shifting from the initial creation of basic
services, which the software engineering community can do reasonably well, to
the assembly of services through supply chains, which the information systems
community can probably manage better than the software engineers.

Software vendors attempt to offer a similar model of provision by offering
products with a series of configurable options through products such as SAP.
However, this offers choice limited only to that which is built into the overall
software offering and the manner in which it can be assembled and integrated
(Sprott 2000). Consumers are not free to substitute functions with those from
another supplier since the software is subject to binding, which configures and
links the component parts and makes it difficult to perform substitution.

Therefore, the goal must be to develop technology which will enable binding
to be delayed until immediately before the point of execution of a system. This
will enable consumers to select the most appropriate combination of services
required at any point in time. However late binding comes at a price, and for
many consumers, issues of reliability, security, cost, and convenience may mean
that they prefer to enter into contractual agreements to have some early binding
for critical or stable parts of a system, leaving more volatile functions to late
binding and thereby maximizing competitive advantage. The consequence is that
any future approach to software development must be interdisciplinary so that
non-technical issues, such as supply contracts, terms and conditions, certifica-
tion, and redress for software failure are an integral part of the new technology.

The key focus of the software as a service concept is, therefore, not about
components or system configuration options. Instead, software as a service is
about mass markets of specific services that are progressively aggregated into
useful information systems.

3.2 Related Concepts

The concept of software as a service is not new and variants are already
emerging. For example, the rental model is based upon the rent or hire of

246 Part 2: Managing Information Systems

software from a producer, as a means of reducing upfront costs (Financial Times
2000). However, strictly speaking, the rental model does not imply any change
to the physical structure or installation location of software, and so is merely a
change in payment method.

The alternative server model is based upon the use of thin clients to offer
software from a central server with a charging regime based on pay-per-use,
typically to avoid upfront procurement costs by user organizations and achieve
up-to-the-minute maintenance through access to the latest release of software.
However, this model does not necessarily require any change to the basic
structure of the software and relies on achieving user flexibility through the
distribution network. The problem of maintenance and delivering flexibility is
passed to the host organization and provides little scope for easily delivering
software variants and personalized solutions.

Finally, the service package model is based on a well established trend for
products to be packaged with a range of services designed to support and
enhance product use. For example, an airline offering seats as its core product
may offer a range of additional, value-adding services as a package. Similarly,
some software producers offer business solutions comprising product and
service elements. Again, this concept does not imply any change in the nature
of the underlying software product itself, although users may be provided with
different experiences through the service layer surrounding the product.

3.3 Extending Components

Service-oriented software clearly relates to that of the component (Szyperski
1998). Component-based development includes such technical concepts as
composition, substitution, and evolution, as well as more consumer and market-
oriented issues such as supplier confidence (Brereton and Budgen 2000).
However, components are essentially a system implementation concept and both
constructional issues, such as binding mechanisms, and architectural forms, as
well as conceptual issues, such as characterization of components, require
resolution in order for components to realize their full potential.

A truly service-oriented role for software is far more radical than current
approaches in that it seeks to change the very nature of software. To meet users’
needs of flexibility and personalization, an open market-place framework is
necessary in which the most appropriate versions of software products come
together, are bound and executed as and when needed. At the extreme, the
binding, which takes place prior to execution, is discarded immediately after
execution in order to permit the system to evolve for the next point of execution.
Flexibility and personalization are achieved through a variety of service pro-
viders offering functionality through a competitive market-place, with each
software provision being accompanied by explicit properties of concern for

Layzell/Service-Oriented View of Sofiware 247

binding (e.g., dependability, performance, quality, license details, etc.), covering
both technical and non-technical properties of binding.

In order to deliver the required flexibility through interoperability of
software components, existing technology must be extended so that components
have both a technical and non-technical interface.

The technical interface, which is addressed in current technologies, allows
for the passing of data and control between components.

However, the use of any component is accompanied by a set of implied
terms and conditions, which are typically built into the design and imple-
mentation of the component and are never made explicit.

For systems that evolve slowly over a period of time, such implicit terms and
conditions can be managed through informal processes of program under-
standing, software maintenance impact analysis, and software maintenance
change design. However, in a rapidly changing environment, such informality
is a hindrance—the implicit must be made explicit—so that components can be
selected, combined, executed, and released in an ultra-short timescale.

Examples of the informal issues implied in software include payment terms
and conditions, personalization and configuration, privacy, protection and secu-
rity, licenses and ownership, responsibilities prior to use, system failure, reco-
very and redress, performance criteria, and organizational procedures and
impact.

These issues can be regarded as a service level agreement defining the terms
and conditions of use of an individual software component and it is the explicit
modeling of these issues which gives rise to the change in the nature and
structure of software from product to service.

4. THE SERVICE ARCHITECTURE

Figure 1 shows the architecture of a software service and how the core
software functionality is extended to incorporate the necessary service-level
related issues in order to contract and receive supply of the service. The key
non-technical issues of service marketing, service negotiation, service delivery,
and post-service management each contain a variety of critical management
issues, necessary to enable rapid deployment and replacement of software
components and together form part of a standard service delivery model (e.g.,
Gebrauer and Scharl 1999). For example, service marketing is concerned with
the interface between the software service and service brokers who “introduce”
services to users. Service negotiation concerns the process by which agreement
is reached to use a service under a set of terms and conditions, ensuring that
services are properly deployed and used in appropriate contexts. Service
delivery is concerned with ensuring that services are available at the appropriate

I

SERVICE COMMISSIONING

Service
Marketing

Service Kernel

Advertising

Information
provision

Service
Negotiation

Business
rules Operations

Elementary

Service Protocol Layer

Behavior
negotiation

Performance
negotiation

A

A 4

Responsibilities
negotiation

Purchasing

——

Service

/O Information
'6 log

% Store
%,
%

[Service \

Delivery

Logistics
planning

Service
interaction

Service
accounting

Management

(Post-Service)

Auditing

Billing

A

NOILJWNSNOD 32IAYaS ¥

A

—

External
information
store

Figure 1. A Software Service

v

Service Provider Industry Model

Specialist I
. Value-addin . .
end- Service . 9 Service Service
- service .
service wholesalers . brokers integrators
h providers
providers

Input-output broker

Calculator sub-
contractor

Arithmetic
broker
Division
Addition @
Subtraction Multiplication
Service Service Information Service Service Service
Transport Interaction Portability Composition Selection Personalization
Architecture Architecture Architecture Architecture Architecture Architecture

Service Delivery Infrastructure
Figure 2. Service-Based Architecture

250 Part 2: Managing Information Systems

time and that a check is made to ensure that “delivery” is made according to the
negotiated contract. Finally, post-service management conducts a variety of
after-sales services.

Figure 2 shows how different services can be combined to deliver an “end-
service” to users. For example, the end-service might consist of a calculator
service, i.e., the ability to perform a simple arithmetic operation on two numbers.
End-users employ a brokerage service to identify possible calculator services,
from which one specific service is selected. This service in turn may sub-
contract another service which then uses further brokerage services to procure
services to input numbers, perform a calculation, and output the result. In turn,
an arithmetic broker will identify and select a specific arithmetic service, in this
case, a subtraction service.

Each service is one of a specific type of service: specialist end-service
provider (input, output, addition, etc.), a service wholesaler (calculator), a value-
adding service (calculator sub-contractor, input-output etc.), a service broker
(broker, input-output broker, etc.) or a service integrator (any service that
combines others services).

The service marketing, negotiation, delivery, and post-service management
are clearly critical to ensuring the successful operation of the service supply
chain.

5. USER BENEFITS

The key user benefits of the service-oriented approach to software can most
easily be seen through an example. Consider a simple payroll system that is
required to register hours worked per month by each employee, calculate
monthly pay, calculate tax and social costs, initiate bank transfer payment to
each employee and tax collection service, issue pay slips and charge salary costs
to the appropriate cost centers in a company’s ledger.

Traditionally, such payroll software will be built as a standard product,
employing a range of configuration options to tailor specific processes to each
user organization.

Each element of even a simple payroll system requires a range of expertise
(in pay calculation, taxation laws, electronic funds transfer, etc.) and, while it
may be possible to select “best-in-class” suppliers for each element, typically a
user is presented with a specific combination of function, likely to have been
written by the same organization and hence not guaranteed to be using best-in-
class. The “bound” software product, with its internal interfaces and non-
technical service-level issues linked to the entire product, also makes it difficult
to substitute alternative component parts. It is like the experience of buying
consumer goods in which users are warned “opening the box invalidates the

Layzell/Service-Oriented View of Sofiware 251

warranty”: to try and replace a single, internal software component invalidates
the implied (or explicit) service-level agreement which surrounds the software.

In a service-oriented approach to software, service-level agreements are
bound to individual software services, which can be procured, linked, executed,
and subsequently replaced on an individual basis, but without needing to renego-
tiate an entire service-level agreement bound to a single, assembled system.
Thus if such an architecture were to be employed for providing the payroll
system, individual software services could be changed as necessary.

Tax calculation services could be replaced as different methods of taxation
or calculation are enforced or where employees of subsidiaries or branches come
under a different tax regime. Methods of electronic funds transfer could be
changed to take advantage of new payment techniques offered by different
financial organizations. Similarly, the printing of pay slips could be replaced by
electronic notification of salary. Inthe extreme, the payment for each employee
might utilize a different set of services, while maintaining the integrity of the
whole.

6. CURRENT AND FUTURE STATUS

The work outlined above develops a radical and ambitious interdisciplinary
research program that proposes a general architecture for a service-oriented
approach to software.

A basic proof of concept for the technical core of this approach has been
developed using standard industry tools and implementation of a simulation
model for exploring the potential speed up of time to market using a service-
approach has been developed and is under evaluation (Bennett et al. 2001).

Although it is possible to develop models of service supply chains and to
define the anatomy of a service provider, it is important to recognize that there
is no grand design, methods, or set of tools that will achieve highly flexible,
service-oriented software. While there will be such artefacts, they need to reside
in a broader social, economic, and legal framework, which makes this approach
interdisciplinary as a fundamental prerequisite.

While it is clear that a technical platform for the rapid composition of
services will be possible, the interdisciplinary issues relating to the service-level
agreements surrounding software services present the greatest challenge.

Key issues include:

* How do consumers know what services are available and how do they
evaluate them?

* How do consumers express their requirements?

* How are services composed to ensure that rights and obligations are
properly handled?

252 Part 2: Managing Information Systems

* How are services tested in order to provide trust and confidence in services?

* How must consumers’ data be held to enable portability between different
service suppliers?

» What standards can be used or must be defined to enable portability of
service?

* What will be the impact of branded services and marketing activities (high
quality vs. low price)?

* How can organizations benefit from rapidly changing services and how will
they manage the interface with business processes?

* How will individuals perceive and manage rapidly changing systems? What
is the limit to the speed of change?

* What payment and reward structures will be necessary to encourage SME
service suppliers?

* What will be the new industry models and supply chain arrangements?

These issues will have a significant impact on the future methods of
information system construction, deployment, and use, as well as changing the
very nature of the information systems department. Key skills will shift from
programming and component assembly, to much broader issues where technical
problems are embedded in socio-economic issues of supply chain management,
trust and confidence, flexibility and empowerment, payment and reward.

The software engineering community in its work on component-based
systems, object brokerage, distributed systems management, and portability of
data has moved a long way to delivering the technical environment necessary for
software services. It remains a challenge to the wider information systems com-
munity and cognate disciplines to develop techniques for the modeling and
deployment of the service-level layer that must surround software components
if they are to meet the needs of highly flexible information systems.

7. ACKNOWLEDGMENTS

The author would like to acknowledge the support and input from the
following colleagues in the development of the concept of “software as a
service”: Professors Keith Bennett and Malcolm Munro, University of Durham,
UK Professor David Budgen and Dr. Pearl Brereton, Keele University, UK;
Professor Linda Macaulay, Dr. Nik Mehandjiev and John Keane, UMIST, UK.

8. REFERENCES

Arnold, J., Cooper, C. L., and Robertson, I. T. Work Psychology (3" Edition), Harlow, England:
Financial Times/Prentice Hall, 1998.

Bennett, K., Munro, M., Gold, N. E., Layzell, P. J., Budgen, D., and Brereton, P. “An
Architectural Model for Service-Based Software with Ultra Rapid Evolution,” in Proceedings

Layzell/Service-Oriented View of Sofiware 253

of the IEEE International Conference on Software Maintenance, Florence, Italy, November
2001 (forthcoming).

Booch, G., Rumbaugh, J., and Jacobson, I. The Unified Modeling Language User Guide, Reading,
MA: Addison Wesley, 1999.

Brereton, P., and Budgen, D. “Component Based Systems: A Classification of Issues,” IEEE
Computer (33:11), November 2000, pp. 54-62.

Brereton, P., Budgen, D., Bennett, K., Munro, M., Layzell, P., Macaulay, L., Griffiths, D., and
Stannett, C. “The Future of Software: Defining the Research Agenda,” Communications of
the ACM (42:12), December 1999.

Checkland, P., and Scholes, J. Soft Systems Methodology in Action, Chichester, England: J. Wiley
and Sons, 1990.

Financial Times. “Software Rentals to Increase,” News Digest Report, Financial Times (UK
edition), April 13, 2000, p.8.

Gebrauer, J., and Scharl, A. “Between Flexibility and Automation: An Evaluation of Web
Technology from a Business Process Perspective,” Journal of Computer-Mediated
Communication (5:2), 1999.

Fingar, P. “Component-Based Frameworks for E-Commerce,” Communications of the ACM
(43:10), October 2000.

Jones, C. Patterns of Software Systems Failure and Success, Boston: International Thomson
Press, 1996.

Lovelock, C., Vandermerwe, S., and Lewis, B. Services Marketing, London: Prentice Hall
Europe, 1996.

Pressman, R. Sofiware Engineering,(4" Edition), New York: McGraw-Hill, 1997.

Reifer, D. J. “Requirements Management: The Search for Nirvana,” IEEE Software (17:3),
May/June 2000, pp. 45-47.

Sprott, D. “Componentizing the Enterprise Application Packages,” Communications of the ACM
(43:7), April 2000, pp. 63-69.

Szyperski, C. Component Software: Beyond Object-Oriented Programming, Reading, MA:
Addison Wesley, 1998.

Truex, D., Baskerville, R., and Klein, H. “Growing Systems in Emergent Organizations,”
Communications of the ACM (42:8), August 1999.

About the Author

Paul Layzell has worked in IT for over 20 years and is currently Professor
of Software Management in the Department of Computation, UMIST
(University of Manchester Institute of Science and Technology), UK. His key
research interests are in the processes, management, and support technologies
for the development of software and software-related products. He has worked
on a number of projects concerned with improving software development
productivity, both for new software products, as well as in the maintenance of
large-scale, legacy systems. He has also been concerned with the introduction
of new technologies, such as geographical information systems, and their impact
on development processes and end-user working practices. Professor Layzell is
a fellow of the British Computer Society and member of the IEEE Computer
Society and Association for Computer Machinery. He can be reached by e-mail
at paul.layzell@umist.ac.uk.

254 Part 2: Managing Information Systems

248 Part 2: Managing Information Systems

Layzell/Service-Oriented View of Sofiware 249

