
397

26 METHODS AS THEORIES:
Evidence and Arguments for

Theorizing on Software Development

Steve Sawyer
Pennsylvania State University

University Park, PA U.S.A.

Hala Annabi
University of Washington

Seattle, WA U.S.A.

Abstract In this paper we argue that software development methods represent theories
on how best to engage the impressively complex and inherently socio-
technical activity of making software. To help illustrate our points we draw
on examples of three software methods: the waterfall approach, packaged
software development, and free/libre and open source software development,
In doing this, we highlight that software development methods reflect—too
often implicitly —theories of (1) how people should behave, (2) how groups
of people should interact, (3) the tasks that people should do, (4) the order of
these tasks, (5) the tools needed to achieve these tasks, (6) the proper
outcomes of these tasks, (7) the means to make this all happen, and (8) that
these relations among concepts are further set in specific social, cultural,
economic, and industrial contexts. We conclude by highlighting three trends
in conceptualizing these eight elements.

1 INTRODUCTION

Through this paper we argue that software development methods are vehicles for
theorizing on the impressively complex and inherently socio-technical activity of
making software. We support this argument by comparing the systems development
lifecycle with packaged software development and free/libre and open source methods
of software development. In revealing the implicit theorizing on software development,
we depict aspects of the software development process affecting social inclusion.

398 Part 7: The Information Systems Profession

1This conceptual perspective is increasingly known as social informatics. A simple
summary of social informatics is presented in Sawyer (2005). More complete discussions can
be found in Kling (1999, 2000) and Kling et al. (2005).

2In this paper we make the claim and illustrate our position, leaving to other papers the
conceptual justification. The value of this paper is the support we can provide this premise.

Framing software development as socio-technical is common (e.g., Sawyer 2004;
Scacchi 2002b). A socio-technical lens demands we explicitly attend to the bound-up
nature of people, particular technological elements, and the contexts of these nuanced
interdependencies (Bijker 1995; Bijker et al. 1987; Law and Bijker 1992).1 Social
aspects of software development include how people interact, behave, and organize.
Technological aspects of software development include the use of methods, techniques,
and computing technologies. In practice it is difficult to disentangle the ways people do
things from the methods, techniques, and computing technologies they use for this
doing.

We further note that software development differs from information systems
development methods in at least two ways (Sawyer 2001). First, software development
is focused on the development of an artifact—some defined set of working code that
reflects specifications. An IS development effort is further focused on ensuring that
software is brought together with specific users in specific organizational settings.

Second, current trends in labor specialization are reflected in differences among
skill sets of those that develop software and those that implement IS. Simply, software
engineers do different work than information systems consultants. These two groups of
people also tend to work for different organizations, separate from one another and from
the consumer organization (that purchased the software but needs an IS). This division
of labor is made more clear by considering the business analysts, trainers, technical
specialists, usability staff, and others who serve to make an IS from software.

The range of new approaches to both software and IS development, the constant
evolution in current approaches, and the ongoing attention suggest that our theorizing
is still incomplete. Here we focus specifically on the underlying, and too-often implicit,
elements of this theorizing. We begin by arguing that all software development methods
have eight common elements. To support this argument we draw on a comparison of
three software development approaches. We conclude with specific suggestions for
improving our theorizing on methods.

2 SOFTWARE DEVELOPMENT AS THEORIZING

We contend that software development methods are a form of theory.2 A theory is
a relationship between (or among) two (or more) concepts (Merton 1967). The simplest
form is causal: “A” leads to “B.” An example would be to be born (A) leads to, at some
point, dieing (B). Typically the goal of theory is to develop the relationships among the
constructs to such a point that the theory is general, specific, and accurate. These three
criteria, however, are not mutually attainable. The principle known as “Occam’s razor”
suggests that any theory can pursue two of three criteria, sacrificing the third. In our
example, we pursued accuracy and generality, but could not pursue specificity.

Sawyer & Annabi/Theorizing on Software Development 399

3In this paper we take the first step of engaging the concepts that are part of software
development methods as theory, leaving to future work the task of sorting through the
relationships among these concepts.

Developing, testing, and using theory are central goals of contemporary scholarship.
Variations in representation, notation, value of directionality, and centrality of theory
are contentious topics in every academic discipline. We acknowledge the passion this
topic engenders, leaving to others a more detailed engagement. Our point in raising
theory as a scholarly goal is to aver that in software development, methods are forms of
theory (they identify concepts and presuppose relations). Weick (1995) makes clear that
this is a process, one he calls theorizing. He goes on to argue the importance of making
theorizing more visible to scholars and others. We agree and in this paper do so by
examining the common conceptual elements that make up software development
methods-as-theory.3

2.1 Socio-Technical Theorizing

Our efforts to theorize software development as a socio-technical activity builds on
the social-shaping of technology (SST) perspectives developed in Bijker (1995), Law
and Bijker (1992), and Bijker, et al. (1987). The SST perspective highlights that the
material characteristics and actions of any technology are shaped by the social actions
of the designers, the specific uses of that technology, and the evolving patterns of use
over time. This differs from the codesign approach that is prevalent in North America.
As Scacchi (2005) notes, the codesign approach too often evolves into a benign neglect
of the interaction between what is social and technical, leading to an evocation of the
concepts without a concomitant analytical activity.

Bijker’s four socio-technical principles frame our theorizing. The seamless web
principle states that any socio-technical analysis should not a priori privilege technol-
ogical or material explanations ahead of social explanations, and vice versa. The prin-
ciple of change and continuity argues that socio-technical analyses must account for
both change and continuity, not just one or the other. The symmetry principle states that
the successful working of a technology must be explained as a process, rather than
assumed to be the outcome of “superior technology.” The actor and structure principle
states that socio-technical analyses should address both the actor-oriented side of social
behavior, with its actor strategies and micro interactions, and the structure-oriented side
of social behavior, with its larger collective and institutionalized social norms and
processes.

2.2 Software Development Methods as
Socio-Technical Theories

Two elements of any software development method-as-theory are guidance on how
people should behave and how groups of people should interact. For example, one
might theorize that people are to share information selflessly and pursue egoless

400 Part 7: The Information Systems Profession

programming. Another approach would be to theorize that people will have differences
of opinion and that there will be interpersonal conflict among team members.

Software development methods also reflect a set of expectations relative to the tasks
that people should do, the order of these tasks, and the tools needed to achieve these
tasks. The details of conduct, input and output elements, sequencing, and resource
needs of tasks are central elements of any software development method and the core
of this discourse (e.g., Cubranic and Booth 1999; Egyedi 2004).

The proper outcomes of these tasks continue to be an active area of scholarship.
One trend is a steady movement toward multiple measures and to focusing on measure-
ment of use in addition to measures of the software artifact’s structure, size, and tech-
nical performance (Melone 1990). The rise of open source development has elevated
the attention to theorizing on the reasons why developers perform, and the incentives
that encourage (and discourage) performance (e.g., Bergquist and Ljungberg 2001).

Software development methods also incorporate, explicitly or implicitly, relations
to specific contexts. For example, clean-room, participatory, and packaged software
development approaches demand separation, inclusion, or distance from various groups
of users. The literature on virtual teams and distributed development make clear a
second form of context (geography) (e.g., Moon and Sproull 2000). The differences
among custom and packaged software further suggest that the industrial environment
matters (e.g., Sawyer 2000).

In sum, as laid out in Table 1, software development methods are explicit
representations of (1) how people should behave, (2) how groups of people should
interact, (3) the tasks that people should do, (4) the order of these tasks, (5) the tools
needed to achieve these tasks, (6) the proper outcomes of these tasks (including means
and ways to evaluate these outcomes), and (7) the means to make this all happen. The
relations among these concepts are further set in (8) specific contexts, implying that the
exact nature of such relations are contingent to some degree on the larger social milieu.

Table 1. Concepts Important to Theorizing Software Development Methods
Element Details

People’s individual
behavior

What is expected of people engaged in developing software

People’s collective
action

The interactions among people working together to develop
software

Task selection The particular tasks that need to be done to develop
software

Task ordering The ordering of the particular tasks to develop software
Tool support The roles and featured of tools used to support

tasks/ordering
Outcomes
(measures)

The elements measured to assess both progress and
completion

Incentives The structures put in place to encourage positive, and
discourage negative, behaviors and interactions

Contexts The larger social, cultural, economic and industrial milieu
in which software development takes place

Sawyer & Annabi/Theorizing on Software Development 401

3 COMPARING SDLC, PACKAGE AND FREE/LIBRE
OPEN SOURCE SOFTWARE APPROACHES

To illustrate how these eight concepts underscore methods, we compare three
approaches to developing software. We select the SDLC, packaged software develop-
ment, and FLOSS methods, providing in this section a brief review of these three
approaches before developing our comparison (this is summarized in Table 2).

3.1 Systems Development Life Cycle

The systems development life cycle (SDLC) or waterfall approach is well-known,
oft-referenced, and rarely followed. In the SDLC, specific steps are linearly sequenced
with some overlap between steps to allow for knowledge transfer. Specific skills and
resources for each step, its inputs and outputs, and proper approaches to pursuing the
transfer of inputs to outputs are documented.

The premise of the SDLC is that process drives outcomes. The measures for SDLC
success typically include cost, quality, and user satisfaction as recognition of value to
the larger corporate mission. Implicit in the SDLC are at least two relevant assumptions.
First, it implies that software development takes place within one organization (or, at
least, is totally controlled by that organization— i.e., when hiring a contractor or con-
sultant to construct a custom product). This reflects vertical integration (a hierarchy).
Second, the SDLC is focused on building, not buying, software. This is appropriate, for
that was its purpose.

Staff costs should be minimized and typical SDLC-based efforts are characterized
by team membership turnover, division of labor by both phase and function, and
disbanding following the completion of the first release (Cusumano and Smith 1997).
Thus, these are more like ad hoc work groups, not teams (Goodman et al. 1986).

3.2 Packaged Software Development

Packaged software—also known as shrink-wrapped, commercial-off-the-shelf
(COTS), and commercial software—means the code is sold as a (licensed) product
(purchased from a vendor, distributor or store) for all computer platforms including
mainframes, work-stations, and microcomputers (Carmel 1997; Carmel and Sawyer
1998; Sawyer 2000).

In PSD, time pressures (not cost) drive development. Packaged software developers
tend to have a product (not process) view of development (Carmel 1995; Carmel and
Becker 1995; Cusumano and Smith 1997). A product focus means that the dominant
goal of the software development effort is to ship a product. This product focus also
implies that these products have distinct trajectories with the software evolving through
a planned set of releases.

402 Part 7: The Information Systems Profession

Table 2. Comparing SDLC, Package and FLOSS Development Approaches
Element SDLC Package Open Source

People’s
individual
behavior

Process-focused,
specialized to parti-
cular roles, sequenced,
ego-less, and sharing-
oriented

Product-focused,
competitive, skill-
based, interdependent,
time-pressured

Self interest, skill-
focused and altruistic.

People’s
collective
action

Collective, controlled
and focused on error
reduction

Conflictual, focused on
delivery, and coding

Product focused,
focused on personal
goals and producing a
public good

Task selection Defined by system
requirements and
mostly inflexible

Group defined and
mostly flexible

Driven by self interest
and supported by a
merit system

Task ordering Prescribed by phase or
function

Iterative Fluid, flexible, often
iterative

Tool support Enforce control and
process adherence

Support interactions
and interdependencies

Support interaction and
sharing code

Outcomes
(measures)

Adoption, customer
satisfaction, cost

Market share, user and
industry reviews

Developer satisfaction,
market share, reviews,
portability

Incentives Income, skill-
development

Profit, recognition Developer personal
satisfaction, project
and developer recog-
nition, public good

Contexts Organizational Market driven User-base
Notes Users involved through

intermediaries
Users involved through
intermediaries

Users directly involved
(developers are often
users, and users test
and fix bugs and
contribute code)

In packaged software firms, developers hold line positions so their needs are central
to the performance of the organization. In effect, they are the company’s production
mechanism as they generate revenue. Packaged software developers often have at best
a distant relationship with their user population. This separation means that inter-
mediaries—such as help desk personnel and consultants—link users to developers
(Grudin 1991; Keil and Carmel 1995; Maiden and Ncube 1998).

Packaged software products are measured by criteria such as favorable product
reviews in trade publications, the degree of “mind share”—the awareness of a product
in the minds of the target population, developing a large installed base and/or creating
new markets (Andersson and Nilsson 1996; Brynjolfsson 1994).

Sawyer & Annabi/Theorizing on Software Development 403

3.3 Free/Libre Open Source Software

FLOSS is a broad categorization used to describe software developed and released
under various “open source” licenses. Licenses offer a range of features, all allowing
inspection of the software’s source code. We use the term FLOSS to encompass the free
software movement, which also releases software along the same terms as the OSS
movement, but with a distinction that derivative works must be made available under the
same nonrestrictive license terms. FLOSS projects comprise of a varying number of
developers ranging from a few to a hundred or more. FLOSS development groups are
groups working in distributed computer-mediated networked form (Scacchi 2002b).

FLOSS members interact primarily or exclusively via computer-mediated communi-
cations (CMC). Project members coordinate their activities primarily through private
e-mail, mailing lists, bulletin boards, and chat rooms and use compilers, bug tracking,
and version control systems for their software development.

In general, FLOSS processes are fluid not, complying with any particular software
engineering method (Raymond 1998; Scacchi 2002). One of the most commonly
mentioned models used to explain the methods or practices of FLOSS development is
Raymond’s (1998) “The Cathedral and the Bazaar” metaphor. Raymond depicts FLOSS
developers as autonomously deciding schedule and contribution modes for software
development as merchants in a bazaar would, thereby dismissing the need for central
coordination as the construction of a cathedral would in a master architect. The bazaar
metaphor is limited as it diminishes aspects of the FLOSS development process, such
as the role of the project leader or core group and the existence of de facto hierarchies
(Bezroukov 1999).

In FLOSS, a mixture of self-serving and altruistic goals drive development.
Developers join FLOSS projects for one or more of several reasons, some of which are
employment (as some FLOSS developers are employed by formal organizations to
develop software), to meet a personal need, to contribute to creating a public good, to
gain satisfaction from the software development process, and/or for potential career
gains (Moody 2001).

Members of any project move from peripheral roles to a core developer role in the
project through a merit-based process (Cubranic and Booth 1999). An individual’s tech-
nical expertise and participation in developing the product results in his/her inclusion
in the core group of developers. However, to become one of the core developers means
they must have a detailed understanding of the software and development processes.
Since there is no separate documentation for system requirements or design, this poses
a significant barrier to entry (Fielding 1997; Hecker 1999). Designs and requirements
evolve over time and are implicitly articulated in public mailing lists as a result of indi-
vidual developers’ desired functionality and a developer’s willingness to implement
them (Scacchi 2002b). Tasks are accomplished based on developers’ needs and interests
and articulated in to-do lists as seen in Apache Web Server in the early years (Annabi
2005).

FLOSS software success is measured by a variety of criteria. User satisfaction,
portability, favorable product reviews, learning opportunities, user-base, developer
satisfaction and developer recognition are some of the measure of FLOSS success
(Crowston et al. 2003). Portfolios of measures can be used to assess any particular
project depending on project and members goals.

404 Part 7: The Information Systems Profession

3.4 Methods as Theories: Comparing
the Three Approaches

In Table 2 and below we highlight via comparisons how the eight elements of a
software development method reflect theorizing. A complete analysis is beyond the
scope of this paper; so, here we summarize the concepts. We note the presence of these
concepts in each of the three approaches, leaving to other work attention to relationships
among the concepts.

People’s individual behavior. Each of the three approaches make clear expecta-
tions for a certain set of behaviors from people. In the SDLC, people are to attend to
process, share information, suppress ego issues, and focus on developing role-specific
technical and professional skills. The PSD approach conceives of people as product-
focused, competitive, technically skilled, with limited need for social skills, willing to
take risks, and time-pressured. In FLOSS, people are seen as pursuing a mix of altruistic
and self-serving goals, constrained by social controls, and with high technical skill
levels.

People’s collective action. In the SDLC, people are expected to be oriented to the
goals of the collective and consensus is expected. In PSD, people’s interactions will be
guided by product needs, time pressures, and profit, and conflict is expected. In FLOSS,
people’s collective behavior is guided by the twin goals of public good and personal
needs, and interactions are driven by performance goals.

Task selection. In the SDLC, tasks are predefined by the method and system
requirements—an engineering ethic. The task inputs, outputs and means of proceeding
are specified and often inflexible. In the PSD approach, tasks are more flexible,
although there are common templates or forms that must be met. In FLOSS, tasks are
mostly left to the developers, with a few (such as version control) serving as central
aspects of the effort. These tasks help to structure FLOSS.

Task ordering. In the SDLC, task ordering is typically fixed, linear, and prescribed.
In PSD, the ordering of tasks is more fluid while particular inputs and outputs are less
prescribed. It is difficult to develop a task ordering in FLOSS beyond observing that
certain tasks (such as the use of a configuration management tool) serve as central and
structuring elements of the approach.

Tool support. In the SDLC, software tools are used to enforce task ordering and
task completion (a controlled production environment). These tools are often integrated,
complex, and have limited flexibility. In both the PSD and FLOSS approaches, tools
are engaged that support collaboration, coordination, and production support. These
tools are more flexible, less integrated, and often quite simple.

Outcomes (measures). In the SDLC, process measures are used, and these
measures focus on cost, quality, and user take-up/value. In PSD, product measures are
used, and these measures focus on installed base/market share, sales, margin, and defect
rates. In FLOSS, there is a combination of product and personal measures. This
remains an active area of inquiry and continues to be poorly understood (see Crowston
et al. 2003).

Incentives. In the SDLC, developers’ behaviors are motivated by salary/income,
since developers are employed, as well as opportunities to learn new skills from
developing particular software. In PSD, incentives extend past salary to include stock

Sawyer & Annabi/Theorizing on Software Development 405

options and shares of sales. In FLOSS, there are a variety of incentives depending on
circumstances, but generally, developers are interested in developing a product for the
common good while meeting their own needs, attaining satisfaction from engaging in
the development process, and potentially gaining recognition for themselves and the
project.

Contexts. In the SDLC, software development occurs in the context of organi-
zational goals, needs, and capabilities. The main purpose is to meet organizational
objectives within limited budgets while accommodating social, technological, and
political factors. In the SDLC, risk mitigation is a central issue. In PSD, software is
developed to meet a need present or forecasted in the market, and to pursue oppor-
tunities. In PSD, taking on risk is a central issue. In FLOSS, software is developed by
users for users as ideas about the product evolve over time with user influence being the
main driver. In FLOSS, risk is borne primarily by individuals.

We further note that the roles that users play shape development. And, this shaping
has both a direct and an indirect component. For example, in the SDLC, users are the
focus of one phase, and then kept distant from the development effort. However, a focus
on meeting user’s needs dominates the SDLC approach. In PSD, users are always
distant, but there are extensive efforts to gather user needs and monitor their interests.
These efforts, however, are one of several factors that influence design. In FLOSS,
developers are often users and the blurry boundary between users and developers creates
an interesting dynamic for development.

Table 3. Observations on Theorizing Software Development Methods
Element Details

People’s individual
behavior

An increasingly richer view of people as having passion,
engaging conflict and pursuing personal agendas (not just as
error-producing and limited cognitive agents).

People’s collective action Interactions among people are central characteristics of
methods and must be accounted for in the design of tasks,
tools and outcome measures.

Task selection Tasks are becoming more fluid and more flexible.
Task ordering Task ordering is becoming less linear.
Tool support Tool support moving towards supporting interaction and

access to materials, not (just) code production and process
enforcement.

Outcomes (measures) Measures are expanding and evolving.
Incentives Incentives are under-explored (though FLOSS approaches

require engaging this directly).
Contexts Contexts are under-explored (though evidence and

awareness that a one-size-fits-all approach to software
development is growing).

Notes The number, needs, skills, social power and other resources
of users have substantial and multiple, indirect, effects on
how software is developed.

406 Part 7: The Information Systems Profession

3.5 Observations

Drawing on this analysis, in Table 3 and below we summarize and discuss eight
observations regarding software development methods as incipient theories.

People’s individual behavior. We observe a trend toward a more complex view of
people as having passion, engaging conflict, and pursuing personal agendas (not just as
error-producing and limited cognitive agents). This is most evident in FLOSS
development as one of the top reasons and features of the development process is
“satisfying an itch” for developing and creating to meet needs (Crowston et al. 2003).

People’s collective action. We note that there is a shift toward conceiving the
interaction among people as central characteristics of methods that must be accounted
for in the design of tasks, tools, and outcome measures. Both the PSD and FLOSS
literature make clear that managing interactions are central issues to success (Annabi
2005; Crowston et al. 2003; Sawyer 2000).

Task selection. We observe that task structures are seen as more fluid and respon-
sive. Tasks are defined and chosen through consensus and conflict and with user
involvement. As in the cases of both PSD and FLOSS, developers define tasks through
interactions categorized by both conflict and consensus.

Task ordering. We observe that task ordering is becoming more iterative, with
expectations among developers and users that specific tasks are likely to have multiples
passes. A second aspect of this iterative orientation is the increased flexibility in the
order of tasks.

Tool support. We observe that the roles and uses of software development tools are
moving toward supporting interaction and access to materials. In doing this, the tools
are moving away from focusing solely on code production and process enforcement.
The most vivid example of this is the FLOSS uses of version control software (Shaikh
and Cornford 2004).

Measures. The number of measures being used to evaluate software development
continues to expand. These measures can be seen as a suite and encompass developer
behavior, development team processes, measures of use and value to customers, and
measures of the artifacts size, quality, and resources.

Incentives. It appears that incentives (and disincentives) remain an under-explored
area in SDLC and PSD. FLOSS development suggests that incentives are both intrinsic
and extrinsic (Crowston et al. 2003), affecting developers’ interactions with the product
and others in the development group.

Contexts. We observe that the professional community of software developers, and
many in the academic community studying software development, are aware that there
is no one-size-fits-all approach to software development. There are, however, common
elements that define software development (the point we are arguing here) and that the
way these elements are engaged is driven in part by the context. This contingency
perspective suggests that differences in software development methods are critical.

For more than 20 years, scholars have noted that the number, needs, skills, social
power, and other resources of users have substantial and multiple effects on how
software is developed (e.g., Keil and Carmel 1995; Kling and Iacona 1984; Markus
1983) and how it meets the needs of underserved groups. It appears this user pressure
is influencing the recent work in software development methods. We further note that

Sawyer & Annabi/Theorizing on Software Development 407

the variations among these concepts across the three examples suggests that while the
concepts are common, the pattern of relationships among these concepts differs.

4 IMPLICATIONS

We have argued here that software development methods can be best understood
as theories and posited that these engage eight concepts. Drawing on a comparison of
three approaches, we have observed that social inclusion (e.g., users and uses) helps to
shape software development in many direct and indirect ways. In Table 4 and below,
we look beyond our current observations to speculate on how we might advance
theorizing on software development methods.

4.1 More Complex Representations of People’s Behaviors

We expect that future software development methods will have more nuanced and
complex representations of people’s behaviors. For example, we expect that developers
will be increasingly construed as problem-solvers (and not error-prone code writers)
(Mockus and Herbsleb 2002). In part this more complex view of software developers
is driven by our increased understanding of their work. It may also, at least indirectly,
draw on our increased understanding of knowledge-based work. That is, we see soft-
ware developers as knowledge workers, and increasingly they are able to choose what
projects to join (Annabi 2005; Drucker 1998). This more inclusive view of people’s
behaviors is likely to drive a resurgence of empirical studies on performance and process
(such as is seen in the FLOSS literature).

A second trend we expect to see in future theorizing on software development is
that the interactions among people, and among people and the various tools and
repositors used in developing software, will be seen as a central activity (e.g., Mockus
and Herbsleb 2002; Scacchi 2002a). As we note below, this will influence the design
and uses of tools and incentives. This trend is likely to be instantiated in guidance for
pair programming, team development, structured communication, shared work environ-
ments, and a more discourse-oriented approach to documenting decisions.

Table 4. Guidance for Continued Theorizing on Software Development Methods
Leverage Points:
1. More complex representations of people’s behaviors
2. More fluid task elements supported with more flexible tools
3. Increased integration of incentives, measures and context

408 Part 7: The Information Systems Profession

4.2 More Fluid Task Elements Supported with
More Flexible Tools

We speculate that future theorizing on software development methods will build on
the concepts of templates. A template-oriented view makes clear that these structures
are a guide, to be interpreted, not followed. In contrast, the SDLC and other recipe-
based views makes guidance more like scripts: inflexible and increasingly unwieldy (as
exceptions and errors lead to expanded scripting). The move toward templates means
a blurring of tasks and ordering (even though the focus on particular inputs and outputs
will sharpen). So, even as the sequence of tasks becomes more fluid, and perhaps less
linear, the specific needs at templated points will increasingly become clearer (and better
understood). And, as noted above and in Sawyer (2004), we speculate that the tools
used will better support people’s collaboration and interaction—going beyond produc-
tion and control functions (e.g, Vessey and Sravanapudi 1995).

4.3 Increased Integration of Incentives,
Measures and Context

Future theorizing on software development methods will better align participant’s
incentives with tasks and in doing this, these incentives will reflect the more creative,
problem-solving, collaborative nature of people (Halloran and Scherlis 2002; Mockus
and Herbsleb 2005; Scacchi 2005). These incentives are likely to draw on multiple
measures and a better understanding of tradeoffs (e.g., for FLOSS portfolios of measures
suggested by Crowston et al. 2003). And, these methods will reflect contingencies such
as contextual pressures and needs, including users’ engagement issues. This is
especially significant to the issue of social inclusion. The inclusion of underrepresented
groups in the software development process produces software that is consistent with
their needs leading to their inclusion.

Looking beyond these specific speculations regarding future theorizing on software
development methods, we argue that such work will explicitly or implicitly engage the
relationships among eight core concepts. More subtly, but perhaps more profoundly, we
introduced three socio-technical principles as the basis of this theorizing. These
principles engage us to consider people’s actions as coequals with tasks, to focus on
processes as flexible and contextual, and to highlight both the structural and agent-like
nature of people and tools. If one takes seriously our position—that software
development methods are incipient theories—then the socio-technical principles of
theorizing provide the conceptual guidance for how to proceed.

References

Andersson, R., and Nilsson, A. “The Standard Application Package Market—An Industry in
Transition?,” in M. Lundeberg and B. Sundgren (eds.), Advancing Your Business: People
and Information Systems in Concert, Stockholm: EFI, Stockholm School of Economics,
1996.

Sawyer & Annabi/Theorizing on Software Development 409

Annabi, H. Moving from Individual Contribution to Group Learning: The Early Years of the
Apache Web Server, unpublished Ph.D. dissertation, Syracuse University, Syracuse, New
York, 2005.

Bergquist, M., and Ljungberg, J. “The Power of Gifts: Organizing Social Rrelationships in
Open Source Communities,” Information Systems Journal (11:4), 2001, pp. 305-320.

Bezroukov, N. “A Second Look at the Cathedral and the Bazaar,” First Monday (4:12), 1999.
Bijker, W. Of Bicycles, Bakelites, and Bulbs: Toward a Theory of Socio-Technical Change,

Cambridge, MA: MIT Press, 1995.
Bijker, W., Hughes, T. , and Pinch, T. The Social Construction of Technological Systems,

Cambridge, MA: MIT Press, 1987.
Brynjolfsson, E. “The Productivity Paradox of Information Technology,” Communications of

the ACM (36:12), 1994, pp. 67-77.
Carmel, E. “American Hegemony in Packaged Software Trade and the ‘Culture of Software,’”

The Information Society (13:1), 1997, pp. 125-142.
Carmel, E. “Cycle-Time in Packaged Software Firms,” Journal of Product Innovation

Management (12:2), 1995, pp. 110-123.
Carmel, E., and Becker, S. “A Process Model for Packaged Software Development,” IEEE

Transactions on Engineering Management (41:5), 1995, pp. 50-61
Carmel, E., and Sawyer, S. “Packaged Software Development Teams: What Makes Them

Different?,” Information Technology & People (11:1), 1998, pp. 7-19.
Crowston, K., Annabi, H., and Howison, J. “Defining Open Source Software Project Success,”

in S. T. March, A. Massey, and J. I. DeGross (eds.), Proceedings of the 24th International
Conference for Information Systems, Seattle, WA, December 2003, pp. 327-340.

Cubranic, D., and Booth, K. S. “Coordinating Open-Source Software Development,” paper
presented at the Seventh IEEE Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises, 1999.

Cusumano, M., and Smith, S. “Beyond the Waterfall: Software Development at Microsoft,” in
D. Yoffie (ed.), Competing in the Age of Digital Convergence, Boston: Harvard Business
School Press, 1997, pp. 371-411.

Drucker, P. F. “Management’s New Paradigms,” Forbes (162), 1998, pp. 152-177.
Egyedi, T. M. “Standardization and Other Coordination Mechanisms in Open Source oSftware,”

International Journal of IT Standards & Standardization Research (2:2), 2004, pp. 1-17.
Fielding, R. T. “The Apache Group: A Case Study of Internet Collaboration and Virtual

Communities,” UCI School of Social Sciences Seminar Series, University of California,
Irvine, 1997 (available online at http://roy.gbiv.com/talks/ssapache/title.htm).

Goodman, P., Ravlin, E., and Argote, L. “Current Thinking About Groups: Setting the Stage for
New Ideas,” in P. Goodman and Associates (eds.), Designing Effective Work Groups, San
Francisco: Jossey-Bass, 1986, pp. 1-33.

Grudin, J. “Interactive Systems: Bridging the Gap between Developers and Users,” IEEE
Computer (24:5), 1991, pp. 59-69.

Halloran, T. , and Scherlis, W. “High Quality and Open Source Software Practices,” paper
presented at the Second Workshop on Open Source Software Engineering, Orlando, FL,
May 2002.

Hecker, F. “Mozilla at One: A Look Back and Ahead,” Mozilla.org, April 2, 1999 (available
online at http://www.mozilla.org/mozilla-at-one.html).

Keil, M., and Carmel, E. “Customer-Developer Links in Software Development,” Com-
munications of the ACM (38:5), 1995, pp. 33-44.

Kling, R. “Learning about Information Technologies and Social Change: The Contribution of
Social Informatics,” The Information Society (16:3), 2000, pp. 212-234.

410 Part 7: The Information Systems Profession

Kling, R. “What Is Social Informatics and Why Does it Matter?,” D-Lib Magazine (5:1),
January 1999 (available online at http://www.dlib.org:80/dlib/january99/kling/01kling.html).

Kling, R., and Iacono, S. “The Control of Information Systems Developments After Imple-
mentation,” Communications of the ACM (27:12), 1984, pp. 1218-1226.

Kling, R., Rosenbaum, H., and Sawyer, S. Understanding and Communicating Social
Informatics: A Framework for Studying and Teaching the Human Contexts of Information
and Communication Technologies, Medford, NJ: Information Today, 2005.

Law, J., and Bijker, W. “Technology, Stability and Social Theory,” in W. Bijker (ed.), Shaping
Technology/Building Society, Cambridge, MA: MIT Press, 1992, pp. 32-50.

Maiden, N., and Ncube, C. “Acquiring COTS Software Selection Requirements,” IEEE Software
(15:2), 1998, pp. 46-56.

Markus, M. “Power, Politics, and MIS Implementation,” Communications of the ACM (26:6),
1983, pp. 430-444.

Melone, N. “A Theoretical Assessment of the User-Satisfaction Construct in Information
Systems Research,” Management Science (36:1), 1990, pp. 76-91.

Merton, R. On Theoretical Sociology, New York: The Free Press, 1967.
Mockus, A., and Herbsleb, J. “Why Not Improve Coordination in Distributed Software

Development by Stealing Good Ideas from Open Source?,” paper presented at the Second
Workshop on Open Source Software Engineering, Orlando, FL, May 2002.

Moody, G. Rebel Code—Inside Linux and the Open Source Movement, Cambridge, MA:
Perseus Publishing, 2001.

Moon, J. Y., and Sproull, L. “Essence of Distributed Work: The Case of Linux Kernel,” First
Monday (5:11), 2000 (available online at http://www.firstmonday.org/
issues/issue5_11/moon/index.html).

Raymond, E. S. “The Cathedral and the Bazaar,” First Monday (3:3), 1998 (available online at
http://www.firstmonday.org/issues/issue3_3/raymond/index.html).

Sawyer, S. “Information Systems Development: A Market-Oriented Perspective,” Communi-
cations of the ACM (44:11), 2001, pp. 97-102.

Sawyer, S. “Packaged Software: Implications of the Differences from Custom Approaches to
Software Development,” European Journal of Information Systems (9:1), 2001, pp. 47-58.

Sawyer, S. “Social Informatics: Principles and Opportunties,” Bulletin of the American Society
for Information Science and Technology, June 2005, pp. 2-6.

Sawyer, S. “Software Development Teams: Three Archetypes and Their Differences.” Com-
munications of the ACM (17:12), 2004, pp. 92-97.

Scacchi, W. “Process Models in Software Engineering,” in J. Marciniak (ed.), Encyclopedia of
Software Engineering (2nd ed.), New York: Wiley, 2002a, pp. 993-1005.

Scacchi, W. “Socio-Technical Interaction Networks in Free/Open Source Software Development
Processes,” in S. T. Acuña and N. Juristo (eds.), Software Process Modeling, New York:
Springer Science+Business Media Inc., 2005, pp. 1-27.

Scacchi, W. “Understanding the Requirements for Developing Open Source Ssoftware
Systems.,” IEE Proceedings-Software (14:1), 2002b, pp. 24-39.

Shaikh, M., and Cornford, T. “Version Control Tools: A Collaborative Vehicle for Learning in
F/OS,” paper presented at the 26th International Conference on Software Engineering:
Collaboration, Conflict and Control: The Fourth Workshop on Open Source Software
Engineering, Edinburgh, Scotland., May 25, 2004.

Vessey, I., and Sravanapudi, P. “Case Tools as Collaborative Support Technologies,”
Communications of the ACM (38:1), 1995, pp. 83-95.

Weick, K. “What Theory Is Not: Theorizing Is,” Administrative Science Quarterly (40), 1995,
pp. 385-390.

Sawyer & Annabi/Theorizing on Software Development 411

About the Authors

Steve Sawyer conducts research on social and organizational informatics, studying how
people work together and how they use information and communication technologies. His most
recent research programs include investigating how software development can be improved
through attending to the social aspects of working together; studying how people adapt to
working with large-scale information systems implementations (such as enterprise resource
packages); and understanding the changes to organizations (and organizational work) due to the
increased distribution of computing. Corning, IBM, Sonoco, Xerox, the Lattanze Foundation, and
the National Science Foundation have supported his research. Steve teaches information systems
analysis and design, project management, and implementation; information-technology-enabled
organizational change; social informatics; and field-based research methods. He can be reached
at sawyer@ist.psu.edu.

Hala Annabi is an assistant professor at the Information School at the University of
Washington. Her research addresses the effects of information technology on learning in both
the work and educational settings. More specifically, she studies how the new forms of computer
mediated work affect individual, group and organizational learning in distributed work settings.
She is currently investigating group learning in Open Source Software development teams and
organizational learning in distributed multinational engineering firm. Additionally, she is
interested in the effects of asynchronous learning networks on learning in educational settings.
She is currently investigating how asynchronous learning networks can be used to improve
learning and student satisfaction in large lecture style courses. Her teaching interests are in the
impact of information technology on organizations, organizational learning and knowledge
management, and organizational behavior. For more information please contact Hala at
hpannabi@u.washington.edu.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

